Keep up to date on all the latest publications
Theme 1 Improving technologies
Project 1A: Novel biosolids processing routes for next generation, high quality products
2021
Flores-Alsina, X., Ramin, E., Ikumi, D., Harding, T., Batstone, D., Brouckaert, C., Sotemann, S. and Gernaey, K.V., 2021. Assessment of sludge management strategies in wastewater treatment systems using a plant-wide approach.Water Research,190, p.116714. https://doi.org/10.1016/j.watres.2020.116714
2022
Abood, K., Das, T., Lester, D.R., Usher, S.P., Stickland, A.D., Rees, C., Eshtiaghi, N. and Batstone, D.J., 2022. Characterising sedimentation velocity of primary waste water solids and effluents.Water Research,219, p.118555. https://doi.org/10.1016/j.watres.2022.118555
Ahmmed, M.S., Skerman, A. and Batstone, D.J., 2022. Predicting long-term solid accumulation in waste stabilisation lagoons through a combined CFD-process model approach.Chemical Engineering Research and Design,184, pp.267-276. https://doi.org/10.1016/j.cherd.2022.06.012
Das, T., Usher, S.P., Batstone, D.J., Rees, C.A., Stickland, A.D. and Eshtiaghi, N.,2022. Shear and solid-liquid separation behaviour of anaerobic digested sludge across a broad range of solids concentrations. Water Research, 222, p.118903. https://doi.org/10.1016/j.watres.2022.118903
2023
Das, T., Usher, S.P., Batstone, D.J., Othman, M., Rees, C.A., Stickland, A.D. and Eshtiaghi, N., 2023. Impact of volatile solids destruction on the shear and solid-liquid separation behaviour of anaerobic digested sludge. Science of The Total Environment,894, p.164546. https://doi.org/10.1016/j.scitotenv.2023.164546
Liu, H., Li, X., Zhang, Z., Nghiem, L.D., Gao, L., Batstone, D.J. and Wang, Q., 2023. Achieving expanded sludge treatment capacity with additional benefits for an anaerobic digester using free ammonia pretreatment. Chemical Engineering Journal,465, p.142846. https://doi.org/10.1016/j.cej.2023.142846
Alvi, M., Batstone, D., Mbamba, C.K., Keymer, P., French, T., Ward, A., Dwyer, J. and Cardell-Oliver, R., 2023. Deep learning in wastewater treatment: a critical review. Water Research, p.120518. https://doi.org/10.1016/j.watres.2023.120518
Mo, R., Guo, W., Batstone, D., Makinia, J. and Li, Y., 2023. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes–A comprehensive review. Water Research, p.120504. https://doi.org/10.1016/j.watres.2023.120504
Project 1B: Enhancing resource recovery through thermal and hydrothermal processing
Project 11: Carbon sink or swim: biochar win-win-win?
2021
Marzbali, M.H., Kundu, S., Halder, P., Patel, S., Hakeem, I.G., Paz-Ferreiro, J., Madapusi, S., Surapaneni, A. and Shah, K., 2021. Wet organic waste treatment via hydrothermal processing: A critical review.Chemosphere,279, p.130557. https://doi.org/10.1016/j.chemosphere.2021.130557
Patel, S., Kundu, S., Halder, P., Rathnayake, N., Marzbali, M.H., Aktar, S., Selezneva, E., Paz-Ferreiro, J., Surapaneni, A., de Figueiredo, C.C. and Sharma, A., 2020. A critical literature review on biosolids to biochar: an alternative biosolids management option.Reviews in Environmental Science and Bio/Technology,19, pp.807-841. https://doi.org/10.1007/s11157-020-09553-x
2022
Hakeem, I.G., Halder, P., Marzbali, M.H., Patel, S., Rathnayake, N., Surapaneni, A., Short, G., Paz-Ferreiro, J. and Shah, K., 2022. Mild sulphuric acid pre-treatment for metals removal from biosolids and the fate of metals in the treated biosolids derived biochar.Journal of Environmental Chemical Engineering,10(3), p.107378. https://doi.org/10.1016/j.jece.2022.107378
Rathnayake, N., Patel, S., Halder, P., Aktar, S., Pazferreiro, J., Sharma, A., Surapaneni, A. and Shah, K., 2022. Co-pyrolysis of biosolids with alum sludge: Effect of temperature and mixing ratio on product properties.Journal of Analytical and Applied Pyrolysis,163, p.105488. https://doi.org/10.1016/j.jaap.2022.105488
Aktar, S., Hossain, M.A., Rathnayake, N., Patel, S., Gasco, G., Mendez, A., de Figueiredo, C., Surapaneni, A., Shah, K. and Paz-Ferreiro, J., 2022. Effects of temperature and carrier gas on physico-chemical properties of biochar derived from biosolids. Journal of Analytical and Applied Pyrolysis, 164, p.105542. https://doi.org/10.1016/j.jaap.2022.105542
2023
Patel, S., Marzbali, M.H., Hakeem, I.G., Veluswamy, G., Rathnayake, N., Nahar, K., Agnihotri, S., Bergmann, D., Surapaneni, A., Gupta, R. and Sharma, A., 2023. Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption.Waste Management,159, pp.146-153. https://doi.org/10.1016/j.wasman.2023.01.037
Rathnayake, N., Patel, S., Hakeem, I.G., Pazferreiro, J., Sharma, A., Gupta, R., Rees, C., Bergmann, D., Blackbeard, J., Surapaneni, A. and Shah, K., 2023. Co-pyrolysis of biosolids with lignocellulosic biomass: Effect of feedstock on product yield and composition.Process Safety and Environmental Protection,173, pp.75-87. https://doi.org/10.1016/j.psep.2023.02.087
Project 1C: The impact of microbial ecology on operation of biosolids treatment trains.
2021
Elliott, J.A. and Ball, A.S., 2021. Selection of industrial trade waste resource recovery technologies—a systematic review.Resources,10(4), p.29. https://doi.org/10.3390/resources10040029
Ngo, T., Ball, A.S. and Shahsavari, E., 2021. The current status, potential benefits and future prospects of the Australian biogas sector.Journal of Sustainable Bioenergy Systems,11(1), pp.14-32. https://doi.org/10.4236/jsbs.2021.111002
2022
Krohn, C., Khudur, L., Dias, D.A., Van den Akker, B., Rees, C.A., Crosbie, N.D., Surapaneni, A., O’Carroll, D.M., Stuetz, R.M., Batstone, D.J. and Ball, A.S., 2022. The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge.Frontiers in microbiology,13, p.1079136. https://doi.org/10.3389/fmicb.2022.1079136
Ngo, T., Khudur, L.S., Hakeem, I.G., Shah, K., Surapaneni, A. and Ball, A.S.,2022. Wood biochar enhances the valorisation of the anaerobic digestion of chicken manure. Clean Technologies, 4(2), pp.420-439. https://doi.org/10.3390/cleantechnol4020026
Ngo, T., Shahsavari, E., Shah, K., Surapaneni, A. and Ball, A.S., 2022. Improving bioenergy production in anaerobic digestion systems utilising chicken manure via pyrolysed biochar additives: A review.Fuel,316, p.123374. https://doi.org/10.1016/j.fuel.2022.123374
Rani, A., Dike, C.C., Mantri, N. and Ball, A., 2022. Point-of-Care Lateral Flow Detection of Viable Escherichia coli O157: H7 Using an Improved Propidium Monoazide-Recombinase Polymerase Amplification Method.Foods,11(20), p.3207. https://doi.org/10.3390/foods11203207
2023
Elliott, J.A., Ball, A.S. and Shah, K., 2023. Investigations into valorisation of trade wastewater for biomethane production.Heliyon,9(2). https://doi.org/10.1016/j.heliyon.2023.e13309
2024
Krohn, C., Jansriphibul, K., Dias, D.A., Rees, C.A., Akker, B. van den, Boer, J.C., Plebanski, M., Aravind, S., O’Carroll, D., Richard, S., Batstone, D.J., Ball, A.S., 2024. Dead in the water – Role of relic DNA and primer choice for targeted sequencing surveys of anaerobic sewage sludge intended for biological monitoring. Water Res. 121354. https://doi.org/10.1016/j.watres.2024.121354
Elliott, J.A.K., Krohn, C., Ball, A.S., 2024. Diversity of Microbial Communities in Trade Wastes—Implications for Treatments and Operations. Appl. Microbiol. 4, 682–703. https://doi.org/10.3390/applmicrobiol4020047
Krohn, C., 2024. How the weird and wonderful microbes in wastewater can make our cities more sustainable. The Conversation. https://theconversation.com/how-the-weird-and-wonderful-microbes-in-wastewater-can-make-our-cities-more-sustainable-220850
Theme 2 Enhancing Product Applications
Project 2A: Creating a market for biosolids by blending with other waste streams to produce a range of high value tailored fertilisers.
2024
Manish Sharma, Jiayin Pang, Bede S Mickan, Megan H Ryan, Sasha N Jenkins, Kadambot H M Siddique 2024.Wastewater- Derived Struvite has the Potential to Substitute for Wheat Soluble Phosphorus Fertiliser for Growth of Chickpea and Wheat. Journal of Soil Science and Plant Nutrition https://doi.org/10.1007/s42729-024-01727-8
Project 2B: Blending biosolids with other waste streams to optimise nutrient ratios and restore and stabilise carbon in Australian cropping soils.
2023
Lu, J., Mickan, B.S., Ryan, M.H., Okely, H., Rollins, C. and Burton, M., 2023. Consumer perceptions of the co-benefits of biosolids and carbon sequestration in a fertiliser aimed at the urban retail market.Journal of Cleaner Production,433, p.139728. https://doi.org/10.1016/j.jclepro.2023.139728 [Also listed under Project 3D]
2024
Feizia Huslina, Leadin S Khudur, Kalpit Shah, Aravind Surapaneni, Pacian Netherway, Andrew S Ball , 2024. Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils Environments | Free Full-Text | Mine Site Restoration: The Phytoremediation of Arsenic-Contaminated Soils (mdpi.com)
Project 2C: Future direction of biosolids.
2021
Dike, C.C., Shahsavari, E., Surapaneni, A., Shah, K. and Ball, A.S., 2021. Can biochar be an effective and reliable biostimulating agent for the remediation of hydrocarbon-contaminated soils?.Environment International,154, p.106553. https://doi.org/10.1016/j.envint.2021.106553
Kundu, S., Patel, S., Halder, P., Patel, T., Marzbali, M.H., Pramanik, B.K., Paz-Ferreiro, J., de Figueiredo, C.C., Bergmann, D., Surapaneni, A. and Megharaj, M., 2021. Removal of PFASs from biosolids using a semi-pilot scale pyrolysis reactor and the application of biosolids derived biochar for the removal of PFASs from contaminated water.Environmental Science: Water Research & Technology,7(3), pp.638-649. https://doi.org/10.1039/D0EW00763C
Roychand, R., Patel, S., Halder, P., Kundu, S., Hampton, J., Bergmann, D., Surapaneni, A., Shah, K. and Pramanik, B.K., 2021. Recycling biosolids as cement composites in raw, pyrolyzed and ashed forms: A waste utilisation approach to support circular economy.Journal of Building Engineering,38, p.102199. https://doi.org/10.1016/j.jobe.2021.102199
2022
Dike, C.C., Khudur, L.S., Hakeem, I.G., Rani, A., Shahsavari, E., Surapaneni, A., Shah, K. and Ball, A.S., 2022. Biosolids-derived biochar enhances the bioremediation of diesel-contaminated soil.Journal of Environmental Chemical Engineering,10(6), p.108633. https://doi.org/10.1016/j.jece.2022.108633
Dike, C.C., Hakeem, I.G., Rani, A., Surapaneni, A., Khudur, L., Shah, K. and Ball, A.S., 2022. The co-application of biochar with bioremediation for the removal of petroleum hydrocarbons from contaminated soil.Science of The Total Environment,849, p.157753. https://doi.org/10.1016/j.scitotenv.2022.157753
Kundu, S., Pramanik, B.K., Halder, P., Patel, S., Ramezani, M., Khairul, M.A., Marzbali, M.H., Paz-Ferreiro, J., Crosher, S., Short, G. and Surapaneni, A., 2022. Source and central level recovery of nutrients from urine and wastewater: A state-of-art on nutrients mapping and potential technological solutions.Journal of Environmental Chemical Engineering,10(2), p.107146. https://doi.org/10.1016/j.jece.2022.107146
Hakeem, I.G., Halder, P., Dike, C.C., Chiang, K., Sharma, A., Paz-Ferreiro, J. and Shah, K., 2022. Advances in biosolids pyrolysis: Roles of pre-treatments, catalysts, and co-feeding on products distribution and high-value chemical production.Journal of Analytical and Applied Pyrolysis,166, p.105608. https://doi.org/10.1016/j.jaap.2022.105608
Shah, K., Patel, S., Halder, P., Kundu, S., Marzbali, M.H., Hakeem, I.G., Pramanik, B.K., Chiang, K. and Patel, T., 2022. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst.Journal of Environmental Management,301, p.113791. https://doi.org/10.1016/j.jenvman.2021.113791
2023
Hakeem, I.G., Sharma, A., Sharma, T., Sharma, A., Joshi, J.B., Shah, K., Ball, A.S. and Surapaneni, A., 2023. Techno‐economic analysis of biochemical conversion of biomass to biofuels and platform chemicals.Biofuels, Bioproducts and Biorefining,17(3), pp.718-750. https://doi.org/10.1002/bbb.2463
Hakeem, I.G., Halder, P., Patel, S., Sharma, A., Gupta, R., Surapaneni, A., Paz-Ferreiro, J. and Shah, K., 2023. Enhancing the pyrolytic conversion of biosolids to value-added products via mild acid pre-treatment.Journal of Analytical and Applied Pyrolysis,173, p.106087. https://doi.org/10.1016/j.jaap.2023.106087
Halder, P., Marzbali, M.H., Patel, S., Short, G., Surapaneni, A., Gupta, R. and Shah, K., 2023. Ammonium nitrogen (NH4+-N) recovery from synthetic wastewater using biosolids-derived biochar.Bioresource Technology Reports,23, p.101592. https://doi.org/10.1016/j.biteb.2023.101592
Hakeem, I.G., Halder, P., Aktar, S., Marzbali, M.H., Sharma, A., Surapaneni, A., Short, G., Paz-Ferreiro, J. and Shah, K., 2023. Investigations into the closed-loop hydrometallurgical process for heavy metals removal and recovery from biosolids via mild acid pre-treatment.Hydrometallurgy,218, p.106044. https://doi.org/10.1016/j.hydromet.2023.106044
Marzbali, M.H., Hakeem, I.G., Short, G., Surapaneni, A., Gupta, R. and Shah, K., 2023. Continuous adsorption of ammonium from primary and digester effluents using biosolids-derived biochar and cation exchange resin.Journal of Water Process Engineering,53, p.103692. https://doi.org/10.1016/j.jwpe.2023.103692
Theme 3 Ensuring Sustainability
Project 3A: Linking stability, odour and production route
2022
Liu, L., Junior, A.A.P., Fisher, R.M. and Stuetz, R.M., 2022. Measuring volatile emissions from biosolids: A critical review on sampling methods.Journal of Environmental Management,317, p.115290. https://doi.org/10.1016/j.jenvman.2022.115290
2023
Hayes, J.E., Barczak, R.J. and Stuetz, R.M., 2023. The use of gas chromatography combined with chemical and sensory analysis to evaluate nuisance odours in the air and water environment.Environment International,180, p.108214. https://doi.org/10.1016/j.envint.2023.108214
Project 3B: The role of Biosolids Management in preserving Earth’s resilience
2021
Li, C., Le-Minh, N., McDonald, J.A., Kinsela, A.S., Fisher, R.M., Liu, D. and Stuetz, R.M., 2022. Occurrence and risk assessment of trace organic contaminants and metals in anaerobically co-digested sludge.Science of The Total Environment,816, p.151533. https://doi.org/10.1016/j.scitotenv.2021.151533
Project 3C: Development of a risk-based framework for biosolids quality management
2022
Li, C., Le-Minh, N., McDonald, J.A., Kinsela, A.S., Fisher, R.M., Liu, D. and Stuetz, R.M., 2022. Occurrence and risk assessment of trace organic contaminants and metals in anaerobically co-digested sludge.Science of The Total Environment,816, p.151533. https://doi.org/10.1016/j.scitotenv.2021.151533
2024
Braine, M.F., Kearnes, M. and Khan, S.J., 2024. Quality and risk management frameworks for biosolids: An assessment of current international practice.Science of The Total Environment,915, p.169953. https://doi.org/10.1016/j.scitotenv.2024.169953
Project 3D: Stakeholder engagement and acceptance
2023
Lu, J., Mickan, B.S., Ryan, M.H., Okely, H., Rollins, C. and Burton, M., 2023. Consumer perceptions of the co-benefits of biosolids and carbon sequestration in a fertiliser aimed at the urban retail market.Journal of Cleaner Production,433, p.139728. https://doi.org/10.1016/j.jclepro.2023.139728[Also listed under Project 2B]