

Nutrient recovery from wastewater and biosolids in Australia

Potential, challenges and
way forward

S. Aryampa, J.Luo, R. Fisher, T. Wiedmann, R. Stuetz, January 2026

A report of a study funded by the ARC Training Centre for
the Transformation of Australia's Biosolids Resource

Research team

Dr Shamim Aryampa (University of New South Wales)
Mr Jingwen Luo (University of New South Wales)
Dr Ruth Fisher (University of New South Wales)
Prof Tommy Wiedmann (University of New South Wales)
Prof Richard Stuetz (University of New South Wales)

About the report

The ARC Training Centre for the Transformation of Australia's Biosolids Resource has a primary goal of delivering world-class and innovative technological solutions and knowledge, to train the next generation of biosolids practitioners in cutting-edge, transformational approaches, and to guide best practice in the biosolids sector. A key project delivered by the Centre was ensuring sustainability in biosolids management by exploring the role of Biosolids Management in preserving Earth's resilience (Project 3B). The project used tailored sustainability assessment frameworks to quantify the environmental, economic and social impacts of key biosolids treatment alternatives. The assessments included carbon, water, energy and nutrient management, life cycle assessments. This report presents the results pertaining to nutrient recovery studies. For further information visit: www.transformingbiosolids.com.au

Acknowledgements

The authors would like to acknowledge the collaboration and support of the following organisations in completing this work:

- Sydney Water
- Water Corp
- SA Water
- Hunter Water
- South East Water (SEW)
- Richgro Garden Products
- Water Research Australia (Water RA)
- Imperial College London

Citations

Aryampa, S., Stuetz, R., Fisher, R., Luo, J., & Wiedmann, T. (2025). Integrated recovery of nutrients during municipal wastewater treatment and biosolids management. *Journal of Cleaner Production*, 144984.

Disclaimer: The views and opinions expressed in this report are those of the authors and do not necessarily represent the official position of the ARC Training Centre for the Transformation of Australia's Biosolids Resource. While we have made every effort to ensure accuracy, we cannot guarantee that this report is entirely free from errors or omissions. Readers are encouraged to critically evaluate the information presented and consult additional sources or experts in the field when necessary.

Contents

Executive summary	1
1. Introduction	3
1.1. Our approach	4
2. Why care about nutrient recovery?	4
2.1. We need the nutrients in the wastewater	4
2.2. To reduce treatment costs	5
3. Where does Australia stand in nutrient recovery?	6
1.1. Decision-making about nutrient recovery	6
4 Opportunities for increasing nutrient recovery in Australia	7
4.1. Recovery during wastewater treatment	7
4.1.1. Phosphorus recovery	7
4.1.2. Nitrogen recovery	8
4.1.3. Integrated recovery of nitrogen and phosphorus	9
4.2. Recovering nutrients from the sidestream	9
4.3. Recovering nutrients from stockpiled biosolids	10
5 Way forward for Australia	10
References	12

Executive summary

Global food demand is expected to rise by up to 60% between 2019 and 2050,^{12,13} significantly increasing the need for nutrients in agriculture. Recovering nutrients from municipal wastewater for fertiliser offers a promising solution because it can reduce dependence on synthetic fertilisers, minimise environmental pollution by nutrients, and support a circular nutrient economy. This research evaluated Australia's current nutrient recovery efforts from wastewater and biosolids using a literature review and a survey of the water industry. It highlights; 1) Where Australia currently stands, 2) What are the challenges for nutrient recovery, 3) How Australia can advance its wastewater nutrient recovery. By applying the insights from this report, utilities can better plan for enhanced nutrient recovery, and policymakers can develop strategies to support national-level improvements

Key results

- 1) Why the Australian wastewater industry needs to care about nutrient recovery is two faceted:
 - i. We need the nutrients for agricultural production. Australian soils are nutrient-deficient, and recovering phosphorus from wastewater can contribute to the 450 kt of phosphorus fertiliser used in the country.
 - ii. Recovery of nutrients from the side stream can reduce phosphorus loading to the plant headworks by up to 50%, generating significant economic savings.
- 2) Where does Australia stand in nutrient recovery
 - i. Nutrient recovery from wastewater is not yet a priority in Australia
 - ii. Despite the clear potential, transitioning wastewater systems from a focus solely on pollutant removal to integrated resource recovery remains a major challenge in Australia.
 - iii. Wastewater utilities often operate in silos, relying heavily on technological solutions without feeling the need to address broader socioeconomic, sustainability and policy factors beyond their immediate scope.
 - iv. Although technologies for nutrient recovery are generally well established, their adoption remains limited.
- 3) Opportunities for improving nutrient recovery in Australia
 - i. Increasing nutrient recovery during wastewater treatment using:
 - Enhanced Biological Phosphorus Removal (EBPR) for phosphorus recovery
 - Nitrogen assimilating heterotrophs for nitrogen recovery in high chemical oxygen demand (COD) wastewater
 - Nitrogen assimilating autotrophs for nitrogen recovery from low-COD wastewater
 - ii. Recovering nutrients from the sidestream
 - Controlled struvite crystallisation can recover 71–96% of sidestream phosphorus, equating to approximately 491 ± 64 tonnes per year and generating up to \$150,000 in annual revenue from a single WWTP².
 - Sidestream nitrogen recovery can be economically viable in streams with high ammonia concentrations. Technologies like struvite precipitation, air stripping, steam stripping, ion exchange and hollow fibre membrane contactors can be used.
 - iii. Recovering nutrients from stockpiled biosolids
Australian biosolids stockpiles contain an estimated 65,000 tonnes of phosphorus and 117,000 tonnes of nitrogen, a substantial nutrient reserve.

4) Way forward for enhancing wastewater nutrient recovery in Australia

The way forward for Australia to increase nutrient recovery from wastewater involves three interrelated aspects, including:

- i. Shifting Mindsets to prioritise nutrient recovery for a sustainable future

As Australia's wastewater sector evolves, a fundamental shift in mindset is needed to one that positions nutrient recovery as a central pillar of sustainable wastewater and biosolids management.

In shifting mindsets about nutrient recovery, the cost-benefit analysis needs to go beyond financial costs and benefits to include the carbon intensity of raw fertiliser production compared to nutrient recovery from wastewater and biosolids. Generally, nutrient recovery from wastewater sidestreams can reduce carbon intensity by 70–95% for nitrogen and 50–80% for phosphorus compared to conventional manufacturing, which is highly carbon-intensive.

- ii. The role of policy in driving change

The responsibility for increasing nutrient recovery should not rest solely with individual wastewater utilities. Instead, it requires coordinated action at the state and national levels. Policymakers have a critical role to play in creating the right incentives and regulatory frameworks.

- iii. Learning from global Leaders

Countries that have successfully integrated nutrient recovery into mainstream wastewater treatment have done so through strong policy support, market development for recovered products, and cross-sector collaboration.

1. Introduction

Global food demand is expected to rise by up to 60% between 2019 and 2050,^{12,13} significantly increasing the need for nutrients in agriculture. However, due to growing environmental and climate challenges, it is essential to supply these nutrients sustainably to maintain both food security and ecological resilience. Recovering nutrients from municipal wastewater for fertiliser offers a promising solution. It can:

1. Reduce dependence on synthetic fertilisers,
2. Minimise environmental pollution by nutrients, and
3. Support a circular nutrient economy.

Compared to solid waste, municipal wastewater is easier to collect, transport, and treat, making it a more efficient source for recovering nitrogen and phosphorus¹⁴. Additionally, municipal wastewater typically has higher nutrient concentrations than solid waste; three times more N and four times more phosphorus have been reported¹⁵. Individual wastewater treatment plants (WWTPs) have reported high nutrient loads, 103-264 tonnes of phosphorus^{2,3,14} and 204-1161 tonnes of nitrogen per year^{3,16,17}. Additionally, municipal wastewater carries significant amounts of carbon, ranging from 2,000 to 8,600 tonnes/yr^{16,18,19}, which can be recovered for agricultural use or energy production²⁰. Recovering carbon also helps reduce greenhouse gas emissions.

Because of its high nutrient content and ease of collection, wastewater treatment is a key area for nutrient recovery for enhancement of agricultural production. In fact, nutrient recovery can also be beneficial to the WWT plants as it has been shown to lower treatment costs²¹. For example, recovering phosphorus instead of removing it can save approximately USD 2.22–3.33 per kgP²² and reduce energy use by about 27%²³. As a result, there is a growing movement to transform WWTPs from basic treatment facilities into resource recovery centres. This shift involves moving from nutrient removal to nutrient recovery^{24,25}. However, achieving this goal requires balancing multiple, sometimes conflicting, factors. The focus should be on recovering nitrogen, phosphorus and carbon efficiently and sustainably. Economic, social, policy, and technological considerations must also be addressed at plant, regional, and national levels.

This research evaluated Australia's current nutrient recovery efforts from wastewater and biosolids and explored:

1. Where Australia currently stands,
2. What are the challenges for nutrient recovery,
3. How Australia can advance its wastewater nutrient recovery.

By applying the insights from this report, utilities can better plan for enhanced nutrient recovery, and policymakers can develop strategies to support national-level improvements

1.1. Our approach

This section presents findings from a combination of methods, including a literature review and a survey of water utilities (Box 1).

The literature review evaluated the effectiveness of various municipal wastewater treatment (WWT) systems and biosolids management approaches for integrated recovery of nitrogen (N), phosphorus (P), and carbon (C).

The review provided recommendations for energy-efficient treatment configurations and examined nutrient flow pathways, identifying opportunities and challenges for improving recovery based on recent studies.

The industry survey, conducted between July and September 2024, aimed to understand current nutrient recovery practices and priorities within the Australian wastewater sector.

Invitations were sent to industry partners, the training centre, and professional groups including IWN, ANZBP, WIOA, WaterRA, and the Queensland Water Directorate.

Of the 34 responses received, 16 contained sufficient data for inclusion in the results.

Box 1: The approach used for this study

The report also incorporates insights and conclusions drawn from nutrient recovery conferences attended by the research team.

2. Why care about nutrient recovery?

2.1. We need the nutrients in the wastewater

Phosphorus is a **non-renewable resource** with no known substitute, making its recovery critically important²⁶. Current estimates suggest that global phosphate rock reserves could be depleted within 61 to 131 years if extraction continues at current rates²⁷, but this estimate varies greatly in literature. Recovering phosphorus from wastewater, at both local and national levels, can help reduce dependence on mined phosphate, buffer against supply disruptions caused by geopolitical instability, and mitigate the impact of rising fertiliser prices^{28,29}.

Recovering phosphorus from wastewater can make a significant contribution to meeting the global demand of 15.1 million tonnes of phosphorus required for food production³⁰. This not only supports agricultural productivity but also enhances environmental sustainability and the planet's resilience. Assessment of phosphorus supply from biosolids and other organic sources has shown promising results for different countries (Box 2).

In Austria, it was estimated that phosphorus in biosolids could potentially replace about 70% of the mineral phosphorus fertiliser used annually⁵.

In Norway, it was shown that with improved distribution, the phosphorus contained in biosolids and animal manure could fully meet the country's fertiliser need⁶.

In Denmark, up to 35% of mineral phosphorus fertiliser imports could be replaced by the combined amounts of phosphorus in the country's biosolids and organic household waste

Box 2: Phosphorus supply from biosolids and other organic sources in Austria, Norway and Denmark

Australian soils are typically low in phosphorus, making fertiliser application essential for maintaining high agricultural output. Around 450 kt of P fertiliser are used annually for agriculture production to ensure food security²⁹. Therefore, efficient use and recovery of phosphorus are vital for improving farm profitability and managing future fertiliser costs.

Recovering phosphorus from wastewater in Australia could play a key role in stabilising supply, reducing import dependence, and supporting sustainable agriculture in the face of global uncertainties²⁸. The wastewater phosphorus is even greater when the system boundary is expanded from just biosolids to include the WWT stage.

Similarly, recovering nitrogen from wastewater offers significant benefits. It reduces reliance on synthetic nitrogen fertilisers produced via the energy-intensive Haber-Bosch process, which consumes about 2.5% of global fossil energy³¹. In fact, if all the nitrogen in municipal wastewater worldwide were recovered, it could supply up to half of the global nitrogen fertiliser demand³².

2.2. To reduce treatment costs

Recycled sidestreams contribute 25–50% phosphorus to influent

The recycling of sidestreams in WWT plants presents a significant operational challenge due to the release of nutrients from biosolids back to the soluble phases during biosolids digestion. This process can effectively reintroduce nutrients that were previously removed, thereby increasing the influent nutrient load.

Studies have shown that recycled sidestreams can contribute between 25% and 50% of the total phosphorus load entering the headworks of WWT plants.¹⁻⁴ If not properly managed, these elevated nutrient levels can lead to process instability, including reactor shock and upset conditions⁸.

To mitigate these risks, phosphorus recovery from sidestreams has emerged as a viable strategy. By recovering phosphorus before recycling, WWT plants can reduce influent phosphorus loads by up to 50%, resulting in significant economic savings and improved process stability¹. As a result, there is a growing research interest and technological developments to reduce the sidestream nutrient loads¹¹.

"By recovering phosphorus from the sidestream, the phosphorus load in the influent of WWTP may be reduced by up to 50% where the sidestream is recycled, representing a significant economic saving."

3. Where does Australia stand in nutrient recovery?

Globally, the recovery of phosphorus from wastewater for agricultural use remains limited. Although wastewater contains approximately 3 million Mt P per annum globally, which could supply up to 20% of global agricultural demand, most of this valuable resource is lost. In Australia, for instance, wastewater holds around 18,000 t P per year, yet only 4% (720 tonnes) of the national phosphorus demand is met through recovery. Unfortunately, about 9 kt P are discharged into the ocean annually, representing a significant loss³³.

Despite the clear potential, transitioning wastewater systems from a focus solely on pollutant removal to integrated resource recovery remains a major challenge in Australia³⁴. While research increasingly highlights the importance of nutrient recovery, particularly from side streams, implementation across the industry is still limited. This is probably due to the high costs of retrofitting infrastructure and the complexity of integrating new technologies into existing systems, which were not originally designed for multifunctional outcomes like wastewater treatment, nutrient recycling, and energy generation.

Moreover, wastewater utilities often operate in silos, relying heavily on technological solutions without feeling the need to address broader socioeconomic, sustainability and policy factors beyond their immediate influence³⁴. This disconnect hinders the practical application of innovative research. To bridge this gap, stronger collaboration between researchers and industry stakeholders is essential. Research must be aligned with the operational realities and policy environments of utilities, ensuring that innovations are both practical and scalable.

Hence, although technologies for nutrient recovery are generally well established, their adoption remains limited. This suggests that the primary barrier is not technical feasibility, but rather institutional, regulatory, and economic challenges. Wastewater and biosolids management involve complex and sometimes conflicting objectives, making it difficult for utilities to prioritise nutrient recovery without broader systemic support.

1.1 Decision-making about nutrient recovery

The insights presented in this section are derived from an industry-wide survey of Australian water utilities. The findings reflect current operational practices, decision-making frameworks, and the level of priority given to nutrient recovery within wastewater treatment and biosolids management.

Survey results indicate that **nutrient recovery is not yet a strategic priority** for most utilities in Australia. This may be attributed to the prevailing view that the primary role of wastewater utilities is to ensure effective treatment and safe discharge, with resource recovery considered a secondary objective.

To paraphrase a participant at the 2024 Nutrient Removal and Recovery conference in Brisbane, Australia “**The primary objective of the wastewater industry is to ensure that wastewater is safe to return to the environment and hence their main mandate is to protect the health of humans and the environment from the contaminants and nutrients in the wastewater. This is a duty that only the utilities can serve and they cannot afford to take the focus off that onto other functions, especially with specified budgets that they have to work within.**”

This phrase highlights the mindset of utilities regarding nutrient recovery, showing a roadblock to increasing recovery efficiency, but also points to a way of increasing nutrient recovery. To move toward more sustainable wastewater management, decision-making must evolve to incorporate environmental, economic, and social impacts across spatial and temporal scales³⁵.

This includes evaluating the fertiliser value of recovered nutrients, their market price, and availability in the agricultural sector.

A shift in focus is needed to one that integrates nutrient recovery into core utility operations and planning. This will require not only technological innovation but also policy support, economic incentives, and cross-sector collaboration to align recovery efforts with broader sustainability goals

Review of the nutrient recovery efficiency of the water treatment processes.	Plans to enhance nutrient recovery water treatment processes.
<p>Seven utilities occasionally (when the need arises) but what constitutes or informs the need for review was not specified.</p> <p>4 utilities review annually (2) or in 3-5 years.</p> <p>3 utilities have never had a review of the nutrient recovery efficiency,</p> <p>18 utilities gave no responses.</p>	<p>1 utility- Within the next 3 years (Upgrade an older setup to improve aeration control)</p> <p>3 utilities- within the next 6 years -Examining biochar-based options to improve recovery of most nutrients. Retrofit of bioreactor to include internal walls and replacement of surface aeration with diffused air and also introduction of bio-phosphorus removal</p> <p>2 utilities- within the next 9 years (Struvite recovery & no clear plan, other than circular economy focus)</p> <p>1 Utility in more than 10 years</p> <p>8 utilities have no immediate plans to improve nutrient recovery</p> <p>18 utilities gave no response</p>

Table 1: Results of the industry survey showing the decision-making processes for enhancing nutrient recovery

4 Opportunities for increasing nutrient recovery in Australia

4.1 Recovery during wastewater treatment

All 16 utilities that provided valid responses during the industry survey selected agricultural applications as the main end use of biosolids targeted. Four utilities selected it as the sole target, highlighting the importance of retaining nutrients in biosolids while treating wastewater.

4.1.1 Phosphorus recovery

Biosolids offer multiple reuse pathways, but their application as soil amendments and fertilisers remains the most cost-effective and sustainable method for reclaiming their carbon and nutrient content³⁶. To maximise fertiliser value, it is essential to retain as much phosphorus as possible during both WWT and biosolids processing.

Research has shown that combining chemical precipitation with biological processes yields the highest phosphorus recovery rates, up to 99% from the effluent^{2,37,38}. Among these, Enhanced Biological Phosphorus Removal (EBPR) is gaining traction due to its high efficiency, lower operational costs, and reduced sludge production compared to chemical methods³⁹. EBPR also has a significantly lower

greenhouse gas footprint, with global warming potentials reported at 3,609 kg CO₂-e per 37,854 m³ of treated wastewater, compared to 5,622 kg CO₂-e for chemical recovery⁴⁰.

EBPR can remove up to 90% of phosphorus, which is 20–50% more than conventional activated sludge systems. Importantly, all phosphorus removed via EBPR is retained in the biosolids, resulting in concentrations that are 2–5 times higher than those from chemical precipitation. EBPR biosolids typically contain 5–7% phosphorus by dry weight, compared to 1–2% in conventional sludge⁴¹. Moreover, the phosphorus in EBPR biosolids has been shown to be as effective as mineral fertilisers for plant growth⁴², whereas phosphorus bound to aluminium or iron in chemically precipitated biosolids is less bioavailable^{37,43}.

Despite these advantages, EBPR adoption in Australia remains low, highlighting a disconnect between the potential of phosphorus recovery technologies and their actual implementation. One contributing factor is that downstream sludge management operations heavily influence the effectiveness of phosphorus recovery. While EBPR technology is well established, further development is needed in post-treatment processes that release and recover phosphorus from microbial biomass⁴². To unlock the full potential of phosphorus recovery, the industry needs to address this gap through targeted research, infrastructure investment, and integrated system design.

4.1.2 *Nitrogen recovery*

Current Biological Nutrient Removal (BNR) technologies primarily focus on removing nitrogen by converting ammonia into nitrogen gas (N₂), which is then released into the atmosphere. While effective for pollution control, this approach results in the loss of reactive nitrogen, which could otherwise be recovered and reused as a fertiliser substitute, a more sustainable and economically beneficial outcome⁴⁴.

Recovering nitrogen, particularly in a reactive form, supports circular economy goals by reducing reliance on synthetic fertilisers. However, nitrogen recovery from the main wastewater stream is technically challenging due to its low concentration, which requires high energy input for extraction and concentration^{25,45}. As a result, most WWT plants are optimised for nitrogen removal rather than recovery, leading to significant nitrogen losses and missed opportunities for agricultural reuse.

Among BNR technologies, anaerobic ammonium oxidation (anammox) stands out for its energy efficiency. It removes reactive nitrogen autotrophically, without adding carbon or oxygen⁴⁶, and can eliminate over 80% of total nitrogen from wastewater⁴⁷. However, like other removal-based methods, anammox ultimately returns nitrogen to the atmosphere, rather than capturing it for reuse.

To enhance sustainability, the industry must shift focus from nitrogen removal to nitrogen recovery, supported by innovations in downstream processing and energy-efficient recovery technologies. For more energy-efficient nitrogen recovery, WWT could move towards the use of nitrogen-assimilating organisms, which provide a promising alternative to improve mainstream nitrogen recovery^{48,49}. Additionally, utilities can focus on nitrogen recovery from the sidestream as a start.

“Although, anammox is effective for energy-efficient nitrogen removal, it serves a contradictory role in nitrogen recovery. Therefore, a critical question is posed: In the strive to transform WWTPs into resource recovery centres, what is the role of anammox? Despite the long way that WWTPs in most countries have to go to achieve the transformations, it is a question worth considering now to make the necessary adjustments as the redesign of already established infrastructure can take many years and considerable capital. Other key areas for improving the sustainability of BNR processes are energy neutrality, cost-effectiveness and low carbon footprint⁹. Hence, further development and research of nitrogen recovery technologies ought to pay attention to these aspects.”¹⁰

Box 3: Role of anammox in nitrogen recovery

4.1.3 Integrated recovery of nitrogen and phosphorus

An integration of enhanced biological phosphorus removal with nitrogen-assimilating heterotrophs is proposed for energy-efficient recovery of the three nutrients from wastewater with high chemical oxygen demand (>550 mg/L), with potential average recovery rates of 90%, 79% and 67% for phosphorus, nitrogen and carbon, respectively ¹⁰. In low chemical oxygen demand (<350 mg/L) systems, the sequential or combined application of chemical precipitation and phototrophic nitrogen-assimilation offers a viable approach to enhance integrated nutrient recovery.

For the integrated recovery of phosphorus, nitrogen and carbon, the complexity of nutrient interactions during WWT is the most critical hindrance to achieving it, and trade-offs may be necessary. However, prioritising which nutrients to recover can be complex because of the interrelationships among nutrients and the benefits of recovered nutrients. Generally, phosphorus has been highlighted as the most valuable nutrient in biosolids, and hence its recovery should be prioritised when resources are limited for nutrient recovery.

4.2 Recovering nutrients from the sidestream

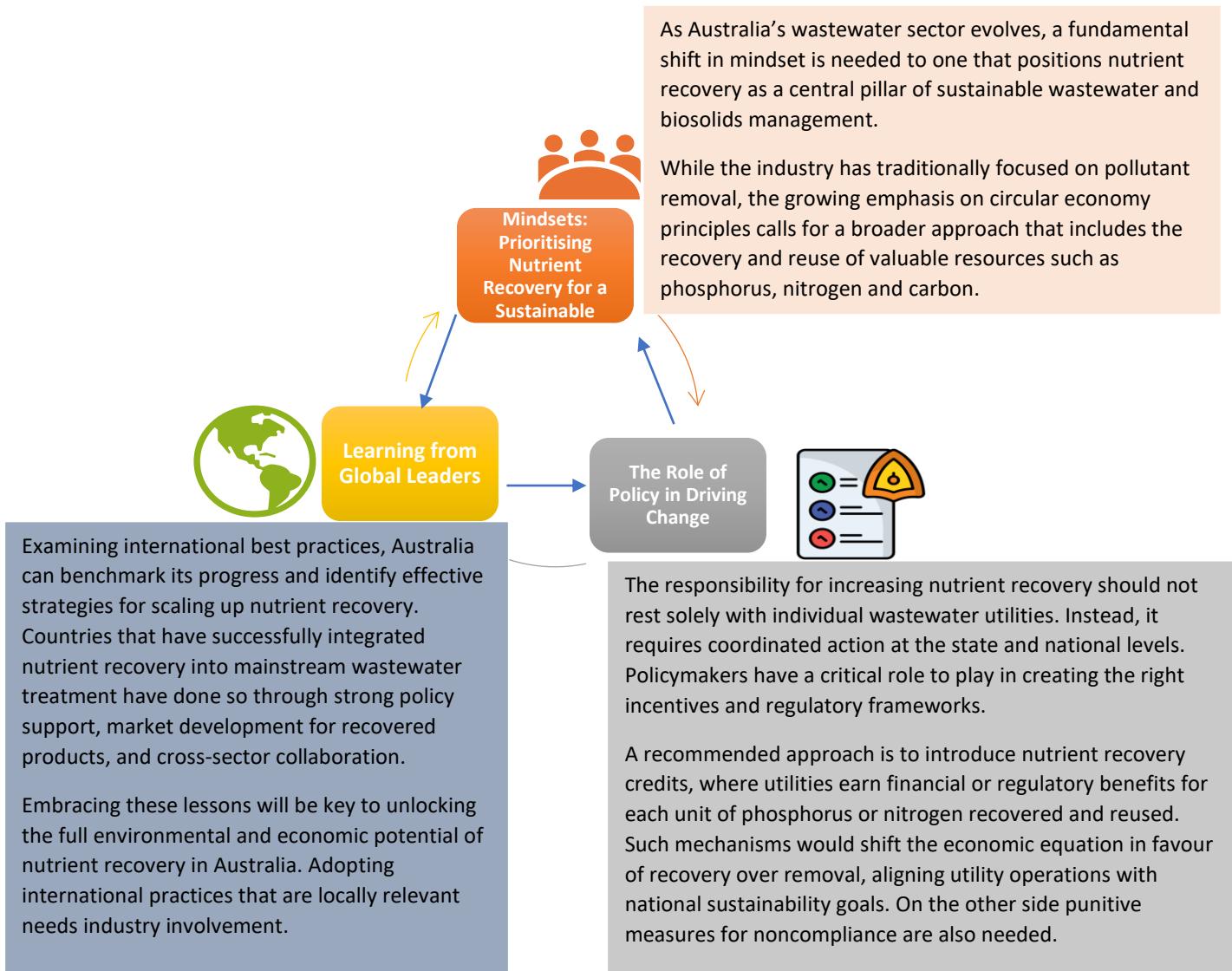
Sidestreams in WWT plants offer a highly efficient pathway for nutrient recovery, thanks to their high nutrient concentrations and low volumes. This makes them particularly suitable for targeted recovery of nitrogen and phosphorus, with lower energy and operational costs compared to mainstream treatment. Phosphorus can be recovered from sidestreams using chemical precipitation. Coagulation with aluminium or iron salts enables complete recovery of phosphorus from the liquid phase and also helps control hydrogen sulphide (H₂S) levels during anaerobic digestion ⁵⁰. However, iron-based precipitation can bind phosphorus in forms that are less bioavailable, limiting its agricultural reuse ²⁸.

Struvite is widely regarded as the most effective compound for phosphorus recovery due to its low chemical binding, high fertiliser value, and low contaminant levels ^{51,52}. It is a slow-release fertiliser mostly applied for turf production, speciality horticulture and plant nurseries and can be blended with other inorganic fertilisers for sale ⁵³. Struvite recovery technologies are already commercially available and have been successfully implemented in countries like the Netherlands and Japan ^{54,55}. Controlled struvite crystallisation can recover 71–96% of sidestream phosphorus, equating to approximately 491 ± 64 tonnes per year and generating up to \$150,000 in annual revenue from a single WWTP².

Sidestream nitrogen recovery is also economically viable, especially in streams with high ammonia concentrations ($\geq 200\text{--}1,000\text{ mg NH}_4^+/\text{L}$). Technologies such as struvite precipitation, air stripping, steam stripping, ion exchange, hollow fibre membrane contactors and microbial electrochemical cells

can be used to recover pure or concentrated ammonia, suitable for reuse as fertiliser or industrial feedstock^{4,25,56}.

4.3 Recovering nutrients from stockpiled biosolids


Australia's wastewater sector holds a largely untapped resource in the form of stockpiled biosolids, which have accumulated over decades of treatment operations. These biosolids are rich in phosphorus and nitrogen, which are essential for agricultural productivity. In 2023, it was reported that approximately 2.6 million tonnes of biosolids were historically stockpiled across the country, with significant proportions in states like Victoria (32%) and Western Australia and the Northern Territory (14.8%)⁵⁷.

These stockpiles contain an estimated 65,000 tonnes of phosphorus and 117,000 tonnes of nitrogen, a substantial nutrient reserve. If recovered and reused, these nutrients could significantly reduce

reliance on synthetic fertilisers and support circular-economy goals in the wastewater and agricultural sectors. Based on recent market prices⁵⁸, for example, monoammonium phosphate (MAP) and diammonium phosphate (DAP) trading around AUD \$1,300–\$1,360 per tonne and nitrogen fertilisers such as urea around AUD \$880–\$900 per tonne in Australia (2025-26), this nutrient reserve represents hundreds of millions of dollars in potential fertiliser value (AUD \$400–\$600 million for phosphorus and \$150–\$300 million for nitrogen) if transformed into saleable products rather than lost as waste inputs. This underscores the need for investment in nutrient recovery technologies, particularly those that can be integrated with biosolids management strategies, including pre- and post-treatment processes for thermal systems.

5 Way forward for Australia

The way forward for Australia increasing nutrient recovery from wastewater involves three interrelated aspects including: Shifting Mindsets to prioritising nutrient recovery, the role of policy in driving change and learning from global Leaders.

In shifting mindsets about nutrient recovery, the cost-benefit analysis needs to go beyond financial costs and benefits to include the carbon intensity of raw fertiliser production compared to nutrient recovery from wastewater and biosolids. Generally, nutrient recovery from wastewater sidestreams can reduce carbon intensity by **70–95% for nitrogen** and **50–80% for phosphorus** compared to conventional manufacturing, which is highly carbon-intensive. Nitrogen fertilisers manufactured via the Haber–Bosch process typically emit 2.5–5.5 t CO₂-e per tonne of ammonia (depending on the natural gas or coal feedstock). When converted into urea, emissions remain high at approximately 1.5–3.0 t CO₂-e per tonne of urea. These emissions arise from both the large energy demand of ammonia synthesis and the direct release of CO₂ during fossil-fuel reforming⁵⁹. Similarly, phosphorus fertilisers derived from mined phosphate rock incur substantial embodied emissions from extraction, beneficiation, sulphuric acid production, and granulation. Life-cycle assessments generally estimate 0.3–0.6 t CO₂-e per tonne of MAP/DAP (mono-/diammonium phosphate), with higher values when long-distance transport is included⁶⁰.

In comparison, recovering nitrogen and phosphorus from wastewater treatment plant sidestreams, such as through struvite precipitation, air/steam stripping, ion exchange, or membrane contactors,

typically exhibits much lower carbon intensity. Most recovery pathways fall within **0.05–0.20 t CO₂-e per tonne of recovered fertiliser product**, largely because the nutrients already exist in concentrated form and recovery offsets both (1) upstream fertiliser manufacturing and (2) downstream treatment burdens such as nitrification–denitrification energy demand.

In learning from global leaders, a good example is the Amersfoort WWT plant in the Amsterdam, owned and operated by the Dutch water board and run as an energy and nutrient factory using innovative approaches to recover nutrients after upgrades to their existing wastewater and sludge processing facilities⁶¹. This facility is a great example of combining shifting mindsets about the role of WWTPs and different entities working together to take responsibility for enhancing nutrient recovery at a regional level.

References

- 1 Yoshida, H., Christensen, T. H., Guildal, T. & Scheutz, C. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant. *Chemosphere* **138**, 874-882 (2015).
- 2 Venkatesan, A. K., Hamdan, A. H. M., Chavez, V. M., Brown, J. D. & Halden, R. U. Mass balance model for sustainable phosphorus recovery in a US wastewater treatment plant. *Journal of environmental quality* **45**, 84-89 (2016).
- 3 Kassouf, H. *et al.* Mass fluxes of nitrogen and phosphorus through water reclamation facilities: Case study of biological nutrient removal, aerobic sludge digestion, and sidestream recycle. *Water Environment Research* **92**, 478-489 (2020).
- 4 Orner, K. D. *et al.* Case study for analyzing nutrient-management technologies at three scales within a sewershed. *Urban water journal* **18**, 410-420 (2021).
- 5 Egle, L., Zoboli, O., Thaler, S., Rechberger, H. & Zessner, M. The Austrian P budget as a basis for resource optimization. *Resources, Conservation and Recycling* **83**, 152-162 (2014).
- 6 Hanserud, O. S., Brod, E., Øgaard, A. F., Müller, D. B. & Brattebø, H. A multi-regional soil phosphorus balance for exploring secondary fertilizer potential: the case of Norway. *Nutrient cycling in agroecosystems* **104**, 307-320 (2016).
- 7 Klinglmair, M. *et al.* Phosphorus in Denmark: national and regional anthropogenic flows. *Resources, Conservation and Recycling* **105**, 311-324 (2015).
- 8 Lacroix, A., Mentzer, C. & Pagilla, K. R. Full-scale N removal from centrate using a sidestream process with a mainstream carbon source. *Water Environment Research* **92**, 1922-1934 (2020).
- 9 Mishra, S., Singh, V., Cheng, L., Hussain, A. & Ormeci, B. Nitrogen removal from wastewater: A comprehensive review of biological nitrogen removal processes, critical operation parameters and bioreactor design. *Journal of Environmental Chemical Engineering* **10**, 107387 (2022).
- 10 Aryampa, S., Stuetz, R. M., Fisher, R. M., Luo, J. & Wiedmann, T. Integrated recovery of nutrients during municipal wastewater treatment and biosolids management. *Journal of Cleaner Production* **494**, 144984 (2025).
<https://doi.org:https://doi.org/10.1016/j.jclepro.2025.144984>
- 11 Sheikh, M. *et al.* Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH₃-N recovery technologies: A review. *Science of The Total Environment* **904**, 166077 (2023).
<https://doi.org:https://doi.org/10.1016/j.scitotenv.2023.166077>
- 12 Falcon, W. P., Naylor, R. L. & Shankar, N. D. Rethinking global food demand for 2050. *Population and Development Review* **48**, 921-957 (2022).

13 van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. *Nature Food* **2**, 494-501 (2021). <https://doi.org:10.1038/s43016-021-00322-9>

14 Rahman, S. et al. Determining the potential role of the waste sector in decoupling of phosphorus: a comprehensive review of national scale substance flow analyses. *Resources, Conservation and Recycling* **144**, 144-157 (2019).

15 Sokka, L., Antikainen, R. & Kauppi, P. Flows of nitrogen and phosphorus in municipal waste: a substance flow analysis in Finland. *Progress in Industrial Ecology, An International Journal* **1**, 165-186 (2004).

16 Anazawa, H., Apichartpattanasiri, S., Oshita, K., Takaoka, M. & Prapaspong, T. Material Flow Analysis and Risk Assessment of Wastewater and Sludge Treatment in Bangkok, Thailand. *Thai Environmental Engineering Journal* **35**, 13-28 (2021).

17 Sattayatewa, C., Pagilla, K., Sharp, R. & Pitt, P. Fate of organic nitrogen in four biological nutrient removal wastewater treatment plants. *Water Environment Research* **82**, 2306-2315 (2010).

18 Khiewwijit, R., Temmink, H., Rijnaarts, H. & Keesman, K. J. Energy and nutrient recovery for municipal wastewater treatment: How to design a feasible plant layout? *Environmental Modelling & Software* **68**, 156-165 (2015).
<https://doi.org:https://doi.org/10.1016/j.envsoft.2015.02.011>

19 Wang, D. et al. Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance - A full-scale comparative study. *Water Research* **167**, 115109 (2019). <https://doi.org:https://doi.org/10.1016/j.watres.2019.115109>

20 Xu, Y., Liu, R., Yang, D. & Dai, X. Sludge treatment and resource recovery towards carbon neutrality in China: current status and future perspective. *Blue-Green Systems* **3**, 119-127 (2021).

21 Ye, J., Liu, J., Ye, M., Ma, X. & Li, Y.-Y. Towards advanced nitrogen removal and optimal energy recovery from leachate: A critical review of anammox-based processes. *Critical Reviews in Environmental Science and Technology* **50**, 612-653 (2020).

22 Dockhorn, T. in *International conference on nutrient recovery from wastewater streams*. 145-158 (IWA Publishing London).

23 Levlin, E. & Hultman, B. in *Polish Swedish seminar, Gdansk March*. 23-25.

24 Beckinghausen, A., Odlaug, M., Thorin, E. & Schwede, S. From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater. *Applied Energy* **263**, 114616 (2020). <https://doi.org:https://doi.org/10.1016/j.apenergy.2020.114616>

25 Winkler, M. K. & Straka, L. New directions in biological nitrogen removal and recovery from wastewater. *Current opinion in biotechnology* **57**, 50-55 (2019).

26 Asimov, I. *Asimov on chemistry*. (Doubleday Books, 1975).

27 Li, B., Boiarkina, I., Young, B., Yu, W. & Singhal, N. Prediction of future phosphate rock: a demand based model. (2016).

28 Mayer, B. K. et al. Total value of phosphorus recovery. *Environmental science & technology* **50**, 6606-6620 (2016).

29 Simpson, R. *Phosphorus: a finite resource essential for life, critical for agriculture and food security*, <<https://www.csiro.au/en/news/All/Articles/2019/June/phosphorous>> (2019).

30 Helin, J. & Weikard, H.-P. A model for estimating phosphorus requirements of world food production. *Agricultural Systems* **176**, 102666 (2019).
<https://doi.org:https://doi.org/10.1016/j.agsy.2019.102666>

31 Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. *Philosophical Transactions of the Royal Society B: Biological Sciences* **368**, 20130116 (2013).

32 Rauch-Williams, T., Gharagozian, A., Hunter, G. L. & Whitlock, D. D. in *Moving Toward Resource Recovery Facilities* Ch. 4, (Water Environment Federation 2014).

33 Cordell, D., Jackson, M. & White, S. Phosphorus flows through the Australian food system: identifying intervention points as a roadmap to phosphorus security. *Environmental Science & Policy* **29**, 87-102 (2013).

34 Wang, X. *et al.* Evolving wastewater infrastructure paradigm to enhance harmony with nature. *Science Advances* **4**, eaq0210 (2018).

35 Guest, J. S. *et al.* A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. *Environmental Science & Technology* **43**, 6126-6130 (2009). <https://doi.org:10.1021/es9010515>

36 Marchuk, S. *et al.* Biosolids-derived fertilisers: A review of challenges and opportunities. *Science of The Total Environment* **875**, 162555 (2023). <https://doi.org:https://doi.org/10.1016/j.scitotenv.2023.162555>

37 Morse, G., Brett, S., Guy, J. & Lester, J. Phosphorus removal and recovery technologies. *Science of the total environment* **212**, 69-81 (1998).

38 Stark, K. in *Proceedings of Polish-Swedish seminars, Stockholm June 6-8*.

39 Blackall, L. L., Crocetti, G. R., Saunders, A. M. & Bond, P. L. A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. *Antonie Van Leeuwenhoek* **81**, 681-691 (2002).

40 Coats, E. R., Watkins, D. L. & Kranenburg, D. A comparative environmental life-cycle analysis for removing phosphorus from wastewater: Biological versus physical/chemical processes. *Water Environment Research* **83**, 750-760 (2011).

41 Tchobanoglous, G., Burton, F. L. & Stensel, H. D. Metcalf & Eddy wastewater engineering: treatment and reuse. *International Edition. McGrawHill* **4**, 361-411 (2003).

42 Yuan, Z., Pratt, S. & Batstone, D. J. Phosphorus recovery from wastewater through microbial processes. *Current Opinion in Biotechnology* **23**, 878-883 (2012). <https://doi.org:https://doi.org/10.1016/j.copbio.2012.08.001>

43 Muster, T. *et al.* Towards effective phosphorus recycling from wastewater: quantity and quality. *Chemosphere* **91**, 676-684 (2013).

44 Wan, Y., Li, R., Wang, X. & Liao, C. Recovery of reactive nitrogen from wastewater using bioelectrochemical systems. *Separation and Purification Technology* **327** (2023). <https://doi.org:10.1016/j.seppur.2023.125002>

45 Metcalf, L., Eddy, H. P. & Tchobanoglous, G. *Wastewater engineering: treatment, disposal, and reuse*. Vol. 4 (McGraw-Hill New York, 1991).

46 Zhou, L. *et al.* Efficient nitrogen removal from municipal wastewater by an autotrophic-heterotrophic coupled anammox system: The up-regulation of key functional genes. *Science of The Total Environment* **904**, 166359 (2023). <https://doi.org:https://doi.org/10.1016/j.scitotenv.2023.166359>

47 Gu, Y. *et al.* The feasibility and challenges of energy self-sufficient wastewater treatment plants. *Applied Energy* **204**, 1463-1475 (2017).

48 Capson-Tojo, G. *et al.* Purple phototrophic bacteria for resource recovery: challenges and opportunities. *Biotechnology advances* **43**, 107567 (2020).

49 Lv, J. *et al.* Comparison of growth characteristics and nitrogen removal capacity of five species of green algae. *Journal of Applied Phycology* **31**, 409-421 (2019).

50 Parker, W., Celmer-Repin, D., Bicudo, J. & Law, P. Assessment of the use of mainstream iron addition for phosphorous control on H₂S content of biogas from anaerobic digestion of sludges. *Water Environment Research* **92**, 338-346 (2020).

51 De-Bashan, L. E. & Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). *Water research* **38**, 4222-4246 (2004).

52 Muys, M. *et al.* A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. *Science of the Total Environment* **756**, 143726 (2021).

53 Burgess, J., Batstone, D.J., Muster, T., Pamminger, F. Wastewater-an untapped resource. 29 (Australian Academy of Technological Sciences and Engineering & Australian Water Recycling Centre of Excellence Victoria, Australia, 2015).

54 Münch, E. V. & Barr, K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. *Water research* **35**, 151-159 (2001).

55 Roeleveld, P., Loeffen, P., Temmink, H. & Klapwijk, B. Dutch analysis for P-recovery from municipal wastewater. *Water Science and Technology* **49**, 191-199 (2004).

56 Batstone, D., Hülsen, T., Mehta, C. & Keller, J. Platforms for energy and nutrient recovery from domestic wastewater: A review. *Chemosphere* **140**, 2-11 (2015).

57 ANZP. Biosolids Production and End Use Survey – Australia 2022/23. (2024).

58 Whitfert. *Online ordering*, <<https://www.whitview.com.au/online-ordering/Default.aspx>> (2026).

59 Kelbel, G. *Understanding fertilizer emissions for carbon regulation*, <https://www.carbonchain.com/blog/understand-your-synthetic-fertilizer-emissions?utm_source> (2024).

60 Hoxha, A., Christensen, B. in *International Fertiliser Society at a Conference in Prague, Czech Republic* (International Fertiliser Society 2018).

61 Parnowska, M. & Geraats, B. WWTP Amersfoort (NL): Conversion into an energy and nutrient factory–commissioning and performance.